CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 08: Scheduling + W06/W07

C. BinKadal

Sendirian Berhad

https://docOS.vlsm.org/Slides/osO8.pdf
Always check for the latest revision!

REV419: Wed 24 Jul 2024 17:00

OS241³): Operating Systems Schedule 2023 - 2

Week	Topic ¹)	OSC10 ²)
Week 00	Overview (1), Assignment of Week 00	Ch. 1, 2
Week 01	Overview (2), Virtualization & Scripting	Ch. 1, 2, 18.
Week 02	Security, Protection, Privacy, & C-language.	Ch. 16, 17.
Week 03	File System & FUSE	Ch. 13, 14, 15.
Week 04	Addressing, Shared Lib, & Pointer	Ch. 9.
Week 05	Virtual Memory	Ch. 10.
Week 06	Concurrency: Processes & Threads	Ch. 3, 4.
Week 07	Synchronization & Deadlock	Ch. 6, 7, 8.
Week 08	Scheduling $+$ W06/W07	Ch. 5.
Week 09	Storage, Firmware, Bootloader, & Systemd	Ch. 11.
Week 10	I/O & Programming	Ch. 12.

- ¹) For schedule, see https://os.vlsm.org/#idx02
- ²) Silberschatz et. al.: **Operating System Concepts**, 10th Edition, 2018.
 -) This information will be on **EVERY** page two (2) of this course material.

C. BinKadal (SdnBhd)

©2016-2024 CBKadal + VauLSMorg

STARTING POINT — https://os.vlsm.org/

- Text Book Any recent/decent OS book. Eg. (OSC10) Silberschatz et. al.: Operating System Concepts, 10th Edition, 2018. (See https://codex.cs.yale.edu/avi/os-book/0S10/).
- □ Resources (https://os.vlsm.org/#idx03)
 - □ SCELE https://scele.cs.ui.ac.id/course/view.php?id=3743. The enrollment key is XXX.
 - □ Download Slides and Demos from GitHub.com —

(https://github.com/os2xx/docOS/)

os00.pdf (W00), os01.pdf (W01), os02.pdf (W02), os03.pdf (W03), os04.pdf (W04), os05.pdf (W05), os06.pdf (W06), os07.pdf (W07), os08.pdf (W08), os09.pdf (W09), os10.pdf (W10).

Problems

195.pdf (W00), 196.pdf (W01), 197.pdf (W02), 198.pdf (W03), 199.pdf (W04), 200.pdf (W05),

201.pdf (W06), 202.pdf (W07), 203.pdf (W08), 204.pdf (W09), 205.pdf (W10).

- LFS http://www.linuxfromscratch.org/lfs/view/stable/
- □ OSP4DISS https://osp4diss.vlsm.org/
- □ This is How Me Do It! https://doit.vlsm.org/
 - □ PS: "Me" rhymes better than "I", duh!

Agenda

1 Start

- OS241 Schedule
- 3 Agenda
- Week 08
- 5 OSC10 (Silberschatz) Chapter 5
- 6 Scheduling
- O CPU Burst: How Long (When)?
- 8 MultiProcessor Schedulling
- The Two State Model

- Preemptive and non-preemptive scheduling
- Schedulers and policies
- Processes and threads
- Deadlines and real-time issues

¹Source: ACM IEEE CS Curricula

C. BinKadal (SdnBhd)

Week 08 Scheduling: Learning Outcomes¹

- Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of tasks in operating systems, such as priority, performance comparison, and fair-share schemes. [Usage]
- Describe relationships between scheduling algorithms and application domains. [Familiarity]
- Discuss the types of processor scheduling such as short-term, medium-term, long-term, and I/O. [Familiarity]
- Describe the difference between processes and threads. [Usage]
- Compare and contrast static and dynamic approaches to real-time scheduling. [Usage]
- Discuss the need for preemption and deadline scheduling. [Familiarity]
- Identify ways that the logic embodied in scheduling algorithms are applicable to other domains, such as disk I/O, network scheduling, project scheduling, and problems beyond computing. [Usage]

¹Source: ACM IEEE CS Curricula

C. BinKadal (SdnBhd)

OSC10 (Silberschatz) Chapter 5

• OSC10 Chapter 5: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multi-Processor Scheduling
- Real-Time CPU Scheduling
- Operating Systems Examples
- Algorithm Evaluation

Week 08: Scheduling

- Reference: (OSC10-ch05 demo-w08)
- Scheduling
 - Basic Concepts
 - WARNING: It's just a BURST
 - IO Burst
 - CPU Burst
 - CPU Burst vs. Freq (See next slide)
 - Criteria: Utilization, throughput, {turnaround, waiting, response} time.
 - (Burst) Algorithm
 - FCFS, SJF, RR, Priority, Multilevel Queue.
 - Preemptive / Non-preemptive (Cooperative) Scheduling
 - I/O Bound / CPU Bound Processes
- Thread Scheduling
 - User-level \rightarrow Process-Contention Scope (PCS): many to many/one.
 - $\bullet~\mbox{Kernel-level}$ \rightarrow System-Contention Scope (SCS): one to one.
- Standard Linux Scheduling
 - Completely Fair Scheduler (CFS).
 - Real Time Scheduling.

CPU Burst: How Long (When)?

©2013 Silberschatz, Galvin and Gagne Operating System Concepts – 9th Edition

Figure: Burst: Duration vs Frequency

C. BinKadal (SdnBhd)

©2016-2024 CBKadal + VauLSMorg

REV419: Wed 24 Jul 2024 17:00 9 / 11

- Asymmetric Multiprocessing vs. Symmetric Multiprocessing (SMP).
- Processor Affinity: soft vs. hard.
- NUMA: Non-Uniform Memory Access.
- Load Balancing
- Multicore Processors
- Real Time Schedulling: Soft vs. Hard.
- Big O Notation
 - O(1)
 - O(log N)
 - O(N)

The Two State Model

• CPU State – I/O State – CPU State – ...

- n: processes in memory.
- p: I/O time fraction.
- p^n : probability n processes waiting for I/O.
- $1 p^n$: CPU utilization of n processes.
- $\left[\frac{(1-p^n)}{n}\right]$: CPU utilization of ONE processes.
- Example: $p = 60\% \Rightarrow$ CPU Utilization Per Process: $\left\lfloor \frac{1 (60\%)^n}{n} \right\rfloor$

PU Utilization Multiprogramming (%)					
N	1	2	3	4	5
Per Process	40	32	26	21	18

• For 5 concurrent processes:

If total time is 100 seconds; for each processs, the CPU time will be 18 seconds.